Acta Cryst. (1995). C51, 1095-1097

Bis(2-chloro-6-fluorobenzoato)bis(nicotinamide)copper(II)

Nam Nhat Hoang

Air Traffic Control Administration of the Slovak Republic, M. R. Stefánik Airport, 82305 Bratislava, Slovakia

Fedor Valach*
Department of Chemical Physics, Faculty of Chemical Technology, Slovak Technical University, Radlinského 9, 81237 Bratislava, Slovakia

Michal Dunaj-Jurčo
Department of Inorganic Chemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinského 9, 81237 Bratislava, Slovakia
(Received 4 January 1994; accepted 29 November 1994)

Abstract

The crystal structure of the title compound contains centrosymmetric trans- $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClFO}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\right]$ units held together by van der Waals forces. The coordination sphere around the Cu atom is a tetragonally deformed octahedron. Each Cu atom is coordinated by four O atoms $[\mathrm{Cu}-\mathrm{O} 2.019$ (3) and 3.141 (3) \AA] and two N atoms $[\mathrm{Cu}-\mathrm{N} 1.936$ (6) \AA]. The nicotinamides are monodentate, whereas the 2-chloro-6-fluorobenzoato ligands are asymmetrically bidentate with the carboxylate $-\mathrm{COO}^{-}$planes twisted nearly perpendicular to the plane of the substituted phenyl ring.

Comment

The title compound contains the 2 -chloro-6-fluorobenzoato ligand which has not been structurally characterized previously. As part of a continuing study of copper(II)-nicotinamide complexes (Hoang, Valach \& Melník, 1993) we report the structure of $[\mathrm{Cu}(2-\mathrm{Cl}-6-$ $\left.\mathrm{FC}_{6} \mathrm{H}_{3} \mathrm{COO}\right)_{2}$ (nia) ${ }_{2}$ ((nia is nicotinamide), (I).

(I)

Each Cu atom occupies a centre of symmetry and is surrounded by one N atom from each of the two nicotinamide ligands $[\mathrm{Cu}-\mathrm{N}(1) 1.936(6) \AA]$ and one O atom from each of the two 2 -chloro-6-fluorobenzoato ligands $[\mathrm{Cu}-\mathrm{O}$ (1) 2.019 (3) \AA], resulting in a trans square-planar configuration; the remaining two coordination positions around the Cu^{I} atom are occupied by a second pair of O atoms from the carboxylate groups of the two 2-chloro-6-fluorobenzoato ligands. According to Brown \& Shannon (1973), the predicted $\mathrm{Cu}-\mathrm{O}(2)$ bond length is $3.09 \AA$, which is very close to the observed value of 3.141 (3) \AA. The coordination of $\mathrm{Cu}^{\text {I }}$ may, therefore, be described as pseudooctahedral rather than square-planar. The weak Cu $\mathrm{O}(2)$ bonding interaction may explain the orthogonal orientation of the plane through $\mathrm{O}(1), \mathrm{C}(1)$ and $\mathrm{O}(2)$ to the least-squares plane through the substituted phenyl ring of the 2 -chloro-6-fluorobenzoato ligand [dihedral angle $94.0(2)^{\circ}$]. In most benzoates, the carboxylate and phenyl ring planes nearly coincide. The nicotinamide ring is planar ($\chi^{2}=5.3$), with the $-\mathrm{CONH}_{2}$ group approximately in-plane, as in the structure of bis(salicylato)bis(nicotinamide)copper(II) (Hoang, Valach \& Melník, 1993). In the crystal structure of pure nicotinamide (Wright \& King, 1954), this group is significantly twisted from the plane of the nicotinamide ring. Mean $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond lengths [1.398 (1) and 1.350 (1) \AA, respectively], and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}-\mathrm{N}$ angles [119.2 (2) and $120.7(3)^{\circ}$, respectively] in the nicotinamide ring are very close to values found in similar complexes: re-

Fig. 1. The molecular structure of the title compound with displacement ellipsoids at the 50% probability level drawn using ORTEP (Johnson, 1965). H atoms are represented by spheres of arbitrary radii.
spectively, 1.396 (9) and $1.355(5) \AA$, and 119.1 (5) and $121.1(5)^{\circ}$ in $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{BF}_{4}\right)_{2}(\text { nia })_{2}\right]$ (Kindberg, Griffith \& Amma, 1977); 1.389 (7) and 1.334 (1) \AA, and $118.5(5)$ and $123.4(5)^{\circ}$ in $\left.\left[\mathrm{Cu}_{2} \text { (acetato) }\right)_{4}(\text { nia })_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Tsintsadze, Kiguradze, Shnulin \& Mamedov, 1984); 1.382 (5) and 1.342 (3) \AA, and 118.9 (2) and $122.5(2)^{\circ}$ in $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{~F}_{2}\right.$ (nia)] (Smolander, Macko, Valko \& Melník, 1992); 1.39 (3) and 1.34 (2) \AA, and 118.8 (3) and $123.1(4)^{\circ}$ in $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}\right)_{2}(\text { nia })_{2}\right]$ (Smolander, Macko, Valko \& Melník, 1992); 1.389 (7) and $1.392(5) \AA$, and $120.0(4)$ and $120.4(5)^{\circ}$ in $\left[\mathrm{Cu}(\text { sal })_{2}(\text { nia })_{2}\right]$ (sal is salicylate) (Hoang, Valach \& Melnik, 1993); and also values for $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{~F}_{2}(\text { nia })_{2}\right]$ (Emsley, Reza, Dawes \& Hursthouse, 1986).

Experimental

The title compound was prepared according to the method of Melník, Sabová, Mrozinski \& Szymaszek (1990). The density D_{m} was measured by flotation in $\mathrm{CCl}_{4} / \mathrm{CH}_{3} \mathrm{Br}$.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{ClFO}_{2}\right)_{2}-\right.$ $\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\right)_{2}$]
$M_{r}=654.90$
Monoclinic
$P 2_{1} / c$
$a=7.435$ (3) \AA
$b=14.124$ (3) \AA
$c=13.693(3) \AA$
$\beta=111.03(3){ }^{\circ}$
$\beta=111.03(3)^{\circ}$
$V=1342.2(7) \AA^{3}$
$Z=2$
$D_{x}=1.62 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.63 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Syntex $P 2_{1}$ four-circle diffractometer
Profile analysis of $\omega / 2 \theta$ scans
Absorption correction: refined from ΔF (DIFABS; Walker \& Stuart, 1983)
$T_{\text {min }}=0.306, T_{\text {max }}=$ 0.654

1834 measured reflections
Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 15
reflections
$\theta=4-10.5^{\circ}$
$\mu=1.076 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism
$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$
Blue

Refinement

Refinement on F
$R=0.047$
$w R=0.045$
$S=1.13$
1185 reflections
187 parameters
H-atom parameters not refined

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$B_{\mathrm{eq}}=\left(8 \pi^{2} / 3\right) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	\boldsymbol{x}	y	z	$B_{\text {eq }}$
Cu	0	0	0	1.06 (2)
O(1)	0.1536 (5)	0.0799 (2)	0.1242 (3)	2.6 (1)
O(2)	0.4368 (7)	0.0374 (3)	0.1311 (3)	4.3 (1)
$\mathrm{O}(3)$	-0.0798 (7)	-0.3946 (3)	-0.0164 (3)	4.1 (1)
N(1)	0.0510 (9)	-0.1118 (4)	0.0876 (4)	5.5 (2)
N(2)	0.0743 (8)	-0.4493 (4)	0.1402 (4)	4.1 (2)
F	0.3942 (5)	0.2573 (3)	0.1095 (3)	4.4 (1)
Cl	0.4300 (3)	0.0426 (1)	0.3913 (1)	4.5 (1)
C(1)	0.3318 (9)	0.0760 (4)	0.1739 (4)	2.7 (2)
C(2)	0.4188 (8)	0.1500 (4)	0.2510 (4)	2.7 (2)
C(3)	0.4139 (9)	0.1338 (4)	0.3516 (4)	2.8 (2)
C(4)	0.3950 (8)	0.2140 (4)	0.4096 (4)	2.7 (2)
C(5)	0.3816 (9)	0.3027 (4)	0.3708 (4)	3.0 (2)
C(6)	0.3814 (9)	0.3174 (4)	0.2721 (4)	3.1 (2)
C(7)	0.3997 (8)	0.2429 (4)	0.2111 (4)	2.8 (2)
C(8)	0.062 (1)	-0.2011 (4)	0.0550 (5)	4.9 (3)
C(9)	0.0598 (9)	-0.2786 (4)	0.1185 (5)	3.6 (2)
C(10)	0.0454 (8)	-0.2629 (3)	0.2152 (4)	2.1 (2)
C(11)	0.0330 (9)	-0.1702 (4)	0.2482 (4)	3.1 (2)
C(12)	0.033 (1)	-0.0950 (5)	0.1807 (5)	4.9 (3)
C(13)	0.0190 (9)	-0.3771 (4)	0.0809 (4)	2.4 (2)

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Cu}-\mathrm{O}(1)$	$2.019(3)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.410(9)$
$\mathrm{Cu}-\mathrm{O}(2)$	$3.141(3)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.419(8)$
$\mathrm{Cu}-\mathrm{N}(1)$	$1.936(6)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.350(8)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.255(7)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.367(8)$
$\mathrm{O}(2)-\mathrm{C}(1)$	$1.256(9)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.380(8)$
$\mathrm{O}(3)-\mathrm{C}(13)$	$1.294(6)$	$\mathrm{C}(7)-\mathrm{C}(2)$	$1.409(8)$
$\mathrm{N}(1)-\mathrm{C}(8)$	$1.350(8)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.401(9)$
$\mathrm{N}(1)-\mathrm{C}(12)$	$1.349(9)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.384(9)$
$\mathrm{N}(2)-\mathrm{C}(13)$	$1.276(8)$	$\mathrm{C}(9)-\mathrm{C}(13)$	$1.477(8)$
$\mathrm{Cl}-\mathrm{C}(3)$	$1.387(6)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.399(7)$
$\mathrm{F}-\mathrm{C}(7)$	$1.392(7)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.408(9)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.461(7)$		
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(1)$	$90.5(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$121.9(5)$
$\mathrm{Cu}-\mathrm{O}(1)-\mathrm{C}(1)$	$126.9(4)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120.2(5)$
$\mathrm{Cu}-\mathrm{N}(1)-\mathrm{C}(12)$	$112.2(5)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$121.2(5)$
$\mathrm{Cu}-\mathrm{N}(1)-\mathrm{C}(8)$	$125.4(4)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	$119.6(5)$
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(12)$	$120.9(6)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{F}$	$121.3(5)$
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{F}$	$119.1(5)$	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$120.7(6)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$117.3(6)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$119.3(5)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$117.9(6)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(13)$	$124.5(6)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	$118.5(5)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(13)$	$114.1(5)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	$115.4(5)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$119.7(5)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$115.5(5)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$118.6(5)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	$119.7(5)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{N}(1)$	$120.7(6)$
$\mathrm{Cl}-\mathrm{C}(3)-\mathrm{C}(2)$	$120.3(5)$	$\mathrm{N}(2)-\mathrm{C}(13)-\mathrm{C}(9)$	$123.5(5)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$1117.4(5)$	$\mathrm{O}(3)-\mathrm{C}(13)-\mathrm{C}(9)$	$120.6(5)$
$\mathrm{Cl}-\mathrm{C}(3)-\mathrm{C}(4)$	$122.3(4)$	$\mathrm{O}(3)-\mathrm{C}(13)-\mathrm{N}(2)$	$115.9(5)$

All H atoms were located from difference Fourier syntheses. They were assigned fixed isotropic displacement parameters and their positions were not refined.

Data collection: Syntex $P 2_{1}$ built-in software. Cell refinement: Syntex $P 2_{1}$ built-in software. Data reduction: XP21 (Pavelčík, 1987). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELX76 (Sheldrick, 1976). Molecular graphics: ORTEP (Johnson, 1965). Software used to prepare material for publication: PARST (Nardelli, 1983).

This work was supported by the Slovak Ministry of Education and Science (Research Project No. 1/710/93). We thank Professor M. Melník and Mrs M. Sprušanská for preparation of the crystals.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates, complete geometry and least-squares-planes data have been deposited with the IUCr (Reference: MU1108). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Brown, I. D. \& Shannon, R. D. (1973). Acta Cryst. A29, 266-282.
Emsley, J., Reza, N. M., Dawes, H. M. \& Hursthouse, M. B. (1986). J. Chem. Soc. Dalton Trans. pp. 313-316.

Hoang, N. N., Valach, F. \& Melník, M. (1993). Zeit. Krist. 208, 27-33.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Kindberg, B. L., Griffith, E. H. \& Amma, E. L. (1977). J. Chem. Soc. Chem. Commun. 182, 461-463.
Melník, M., Sabová, Z., Mrozinski, J. \& Szymaszek, A. (1990). J. Mol. Struct. 240, 285-294.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Pavelčîk, F. (1987). XP21. Computer Program for Syntex P2 Data Reduction. Faculty of Pharmacy, Comenius Univ., Bratislava, Slovakia.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Smolander, K., Macko, M., Valko, M. \& Melník, M. (1992). Acta Chem. Scand. 46, 29-30.
Tsintsadze, G. V., Kiguradze, R. A., Shnulin, A. N. \& Mamedov, Kh. S. (1984). Zh. Struct. Khim. 25, 82-86.

Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Wright, W. B. \& King, G. S. D. (1954). Acta Cryst. 7, 283-285.

Acta Cryst. (1995). C51, 1097-1099

Tetrakis(imidazole)copper(II) Dibromide, $\left[\mathrm{Cu}(\mathrm{Him})_{4}\right] \mathrm{Br}_{2}$

O. Jerry Parker and Gary L. Breneman
Department of Chemistry and Biochemistry, Eastern Washington University, Cheney, WA 99004, USA

(Received 5 April 1994; accepted 7 October 1994)

Abstract

The structure of blue $\left[\mathrm{Cu}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{4}\right] \mathrm{Br}_{2}$ consists of discrete $\left[\mathrm{Cu}(\mathrm{Him})_{4}\right]^{2+}$ ions ($\mathrm{Him}=$ imidazole), with the Cu atom on an inversion center [$\mathrm{Cu}-\mathrm{N} 1.997$ (4) and 2.008 (3) $\AA, \mathrm{N}-\mathrm{Cu}-\mathrm{N} 89.9$ (1) and 90.1 (1) ${ }^{\circ} \mathrm{J}$, and bromide ions [unique $\mathrm{Cu} \cdots \mathrm{Br}^{-} 3.3767$ (4) \AA] in the fifth and sixth octahedral sites above and below the CuN_{4} plane. The Br^{-}ions also take part in a network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}^{-}$hydrogen bonds [$\mathrm{N} \cdots \mathrm{Br}^{-} 3.343$ (4) and 3.383 (4) \AA].

Comment

The $\left[\mathrm{Cu}(\mathrm{Him})_{4}\right] \mathrm{Br}_{2}$ complex has been prepared previously (Goodgame, Goodgame, Hayward \& RaynerCanham, 1968), and its vibrational bands, diffuse reflectance spectra and magnetic moment reported. The analogous iodide complex, $\left[\mathrm{Cu}(\mathrm{Him})_{4}\right] \mathrm{I}_{2}$, has also been prepared, and its molecular and crystal structure determined (Akhtar, Goodgame, Goodgame, Rayner-Canham \& Skapski, 1968; Ballester, Parker \& Breneman, 1993). The molecular determination of the iodide complex showed that the copper-to-iodide distances were long and unequal [3.406 (2) and 3.865 (2) \AA (Ballester, Parker \& Breneman, 1993)] in the pseudo tetragonal stereochemistry. The present work was undertaken in order to determine whether or not the analogous bromide complex, (I), had the same type of distorted tetragonal core.

(I)

An ORTEP (Johnson, 1965) plot of the complex is shown in Fig. 1 with the atomic numbering system. The structure consists of a discrete $\left[\mathrm{Cu}(\mathrm{Him})_{4}\right]^{2+}$ squareplanar cation with two bromide anions, at best, weakly interacting with the copper(II) in the fifth and sixth octahedral positions. The Cu atom lies on an inversion center which requires the CuN_{4} moiety of the cation to be precisely planar and also requires the $\mathrm{Cu} \cdots \mathrm{Br}$ distances to be equivalent. The $\mathrm{Cu} \cdots \mathrm{Br}$ distances of 3.3767 (4) \AA are long for tetragonal copper(II) complexes. The compound CuBr_{2} has short $\mathrm{Cu}-\mathrm{Br}$ distances of $2.40 \AA$ and long $\mathrm{Cu}-\mathrm{Br}$ distances of $3.18 \AA$ (Huheey, 1983). The complex $\left[\mathrm{CuBr}(\mathrm{NCS})(\text { phen })_{2}\right]$ (phen $=1,10$-phenanthroline) has a long $\mathrm{Cu}-\mathrm{Br}$ distance of 2.820 (2) \AA (Parker \& Breneman, 1995) and the five-coordinate complex $\left[\mathrm{CuBr}(\text { phen })_{2}\right] \mathrm{ClO}_{4}$ has a short copper-to-bromide distance of 2.496 (1) A (Parker, Greiner, Breneman \& Willett, 1994).

The $\mathrm{Cu}-\mathrm{N}(\mathrm{Him})$ distances of $2.008(3)$ and 1.997 (4) \AA fall in the normal range for the equatorial bond lengths in tetragonal copper(II) complexes. These distances are comparable with those found in $\left[\mathrm{Cu}(\mathrm{Him})_{4} \mathrm{I}_{2},\left[\mathrm{Cu}(\mathrm{Him})_{4} \mathrm{SO}_{4}\right],\left[\mathrm{Cu}(\mathrm{Him})_{4}\left(\mathrm{ClO}_{4}\right)_{2}\right]\right.$, $\left[\mathrm{Cu}(\mathrm{Him})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{F}_{2}$ and $\left[\mathrm{Cu}(\mathrm{Him})_{4}\left(\mathrm{NO}_{3}\right)_{2}\right]$, with values of 1.996 (4)-2.026(5), 2.000-2.021, 1.998-2.010, 1.984-2.033 and 2.008-2.018 \AA, respectively (Ballester, Parker \& Breneman, 1993; Fransson \& Lundberg, 1972; Ivarsson, 1973; Vreugdenhil, Birker, ten Hoedt, Verschoor \& Reedijk, 1984; McFadden, McPhail, Garner \& Mabbs, 1976).

